30

I am wondering if anyone would know how to evaluate this integral: $$\int_{0}^{\Large\frac{\pi}{4}}\left(\frac{1}{\log(\tan(x))}+\frac{1}{1-\tan(x)}\right)dx.$$

I've tried, unsuccessfully, the change of variables $u=\tan (x)$.

  • 3
    For the second half use, $$\int_a^bf(x)dx=\int_a^bf(a+b-x)dx$$ – lab bhattacharjee Aug 29 '14 at 16:31
  • That's what I did too, @labbhattacharjee. What would you recommend for the first term in the integrand? I tried the same mapping, $x \mapsto \frac{\pi}{4} - x$, but I ended up with $$\int_{0}^{\frac{\pi}{4}} \dfrac{1}{\log(1-\tan x) - \log(1+\tan x)}$$. – Khallil Aug 29 '14 at 16:41
  • 1
    Khallil, you can write the difference of logs as a log of a quotient, and then apply the tangent angle sum identity. – Travis Willse Aug 29 '14 at 16:44
  • Do you know the source for this integral? – Ali Caglayan Aug 29 '14 at 16:50
  • @Khalil the difference to both is of the order $10^6$, you're wrong, see (this page on wolfram alpha) ** (http://www.wolframalpha.com/input/?i=%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D+(+%5Cfrac%7B1%7D%7B%5Clog+(%5Ctan+x)%7D+%2B+%5Cfrac%7B1%7D%7B1-%5Ctan+x%7D+)dx+-+%5Cfrac%7B1%7D%7B2%7D+%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D+(+%5Ccot+x+%2B+1+)+dx)** – RE60K Aug 29 '14 at 17:18
  • @ThomasAndrews most probably, not surely , the OP maybe possible, wanted to um maybe put the upper limit as $\pi/2$ – RE60K Aug 29 '14 at 17:28
  • WolframAlpha doesn't give a closed-form solution for the integrand over the interval given, and it is usually sufficiently clever to do so, which supports your guess, @Aditya. – Travis Willse Aug 29 '14 at 17:35
  • 2
    @Aditya: I am afraid that the OP is genuinely interested in the $\dfrac\pi4$ case, inasmuch as, if we were to substitute $u=\tan x$, the integral would become $\displaystyle\int_0^1\bigg(\dfrac1{\ln x}+\dfrac1{1-x}\bigg)\dfrac{dx}{1+x^2}$, which looks awfully similar to $\displaystyle\int_0^1\bigg(\dfrac1{\ln x}+\dfrac1{1-x}\bigg)~dx=\gamma$, where $\gamma$ is the Euler-Mascheroni constant. – Lucian Aug 29 '14 at 18:16
  • Our saviour, @Lucian! – Khallil Aug 29 '14 at 18:58

3 Answers3

20

We have the following closed form evaluation.

$$ I:=\int_0^{\Large \frac{\pi}{4}}\!\!\left(\frac{1}{\ln(\tan x)}+\frac{1}{1-\tan x}\right)\! \mathrm dx= \color{blue}{\frac\pi8+\frac74\ln2+\frac\gamma2+\ln\pi-2\ln \Gamma\!\left(\!\frac14\!\right)} \tag1 $$

where $\gamma$ is the Euler-Mascheroni constant.

A numerical approximation is $$ I =\color{blue}{0.462999316582640135993449151416572....} $$

As Lucian pointed out, by the change of variable $\displaystyle u=\tan x$, we readily have $$ I=\int_0^1\left(\frac{1}{\ln u}+\frac{1}{1-u}\right)\frac{1}{1+u^2} \mathrm du. $$ We set $$ I(s):=\int_0^1\left(\frac{1}{\ln u}+\frac{1}{1-u}\right)\frac{u^s}{1+u^2} \mathrm du, \quad s>-1. $$ The expected integral is thus $I(0)$.

Let's differentiate $I(s)$.

We get $$ \begin{align} I'(s)& =\int_0^1\left(\frac{1}{\ln u}+\frac{1}{1-u}\right)\frac{u^s\ln u}{1+u^2} \mathrm du \\\\ & =\int_0^1\left(1+\frac{\ln u}{1-u}\right)\frac{u^s}{1+u^2} \mathrm du \\\\ & =\int_0^1\! \frac{u^s}{1+u^2}\mathrm du +\int_0^1\!\frac{(1+u)u^s \ln u}{(1-u^2)(1+u^2)}\mathrm du \\\\ & =\int_0^1\! \frac{u^s(1-u^2)}{1-u^4}\mathrm du +\int_0^1\!\frac{u^s \ln u}{1-u^4}\mathrm du+\int_0^1\!\frac{u^{s+1} \ln u}{1-u^4}\mathrm du. \end{align} $$ By the change of variable $\displaystyle v=u^4$ in each of the preceding integrals and recalling the well known integral representations for the digamma function $\displaystyle \psi : = \Gamma'/\Gamma$ and for its derivative, $$ \psi(s) = -\gamma+\int_0^1 \frac{1 - v^{s-1}}{1 -v}{\rm{d}} v, \quad s>0, $$ $$ \psi'(s) = -\int_0^1 \frac{s^{s-1} \ln v}{1 - v}{\rm{d}} v, \quad s>0, $$ we obtain

$$ I'(s)=\frac{1}{4}\psi\left(\frac{s+3}{4}\right)-\frac{1}{4}\psi\left(\frac{s+1}{4}\right)-\frac{1}{16}\psi'\left(\frac{s+2}{4}\right)-\frac{1}{16}\psi'\left(\frac{s+1}{4}\right). \tag2 $$

Since $$ \left|\left(\frac{1}{\ln u}+\frac{1}{1-u}\right)\frac{u^s}{1+u^2} \right| < u^s, \quad 0<u<1,\, s>-1,$$ giving $$ |I(s)|\leq \int_0^1\left|\left(\frac{1}{\ln u}+\frac{1}{1-u}\right)\frac{u^s}{1+u^2} \right|\mathrm du < \!\!\int_0^1 u^s\mathrm du = \frac{1}{s+1}, $$ then, as $s \rightarrow +\infty$, we have $I(s) \rightarrow 0$.

We deduce that

$$ I(s)=\log \Gamma \left(\frac{s+3}{4}\right)\!-\!\log \Gamma \left(\frac{s+1}{4}\right) \!-\!\frac{1}{4}\psi\!\left(\frac{s+2}{4}\right)\!-\!\frac{1}{4}\psi\!\left(\frac{s+1}{4}\right) , \, s>-1, \tag3 $$

and, for $s=0$,

$$ \begin{align} I=\frac\pi8+\frac74\ln2+\frac\gamma2+\ln\pi-2\ln \Gamma\left(\frac14\right) \end{align} $$

where have used special values of the digamma function, $$ \begin{align} \psi \left(\frac12\right) & = -\gamma - 2\ln 2, \\ \psi \left(\frac14\right) & = -\gamma + \frac\pi2- 3\ln 2, \end{align} $$ and the complement/reflection formula $$ \Gamma\left(\frac34\right)\Gamma\left(\frac14\right)=\frac{\pi}{\sin(\frac\pi4)}=\pi \sqrt{2}. $$

Olivier Oloa
  • 122,789
6

Noti ce that this is not an answer with same limits as question, but I'm leaving it here for others to help them if the upper limit was changed.


We have the following integral: $$I=\int_{0}^{\Large\frac{\pi}{2}}\left(\frac{1}{\log(\tan(x))}+\frac{1}{1-\tan(x)}\right)dx\tag{$I$}$$ Use $\displaystyle \int_0^a f(x) dx=\int_0^a f(a-x) dx$ $$I=\int_{0}^{\Large\frac{\pi}{2}}\left(\frac{1}{\log(\tan(\pi/2-x))}+\frac{1}{1-\tan(\pi/2-x)}\right)dx$$ Use $\displaystyle \tan(\pi/2-x)=\cot(x)$ $$ I=\int_{0}^{\Large\frac{\pi}{2}}\left(\frac{1}{\log(\cot(x))}+\frac{1}{1-\cot(x)}\right)dx\tag{$II$}$$ Add $(I)$ and $(II)$ $$2I=\int_{0}^{\Large\frac{\pi}{2}}\left(\frac{1}{\log(\tan(x))}+\frac{1}{1-\tan(x)}\right)dx+\int_{0}^{\Large\frac{\pi}{2}}\left(\frac{1}{\log(\cot(x))}+\frac{1}{1-\cot(x)}\right)dx$$ Simplify using $\displaystyle \log(\cot x)=\log(1/\tan x)=-\log(\tan x)$ $$2I=\int_{0}^{\Large\frac{\pi}{2}}\left(\frac{1}{1-\cot(x)}+\frac{1}{1-\tan x}\right)dx$$ Use $\displaystyle \cot x\tan x=1$ after taking common denominators to get: $$2I=\int_{0}^{\Large\frac{\pi}{2}}dx=\frac{\pi}2$$ Just the final step: $$I=\frac{\pi}4\Box$$

RE60K
  • 18,045
1

This is my friend’s solution. He doesn’t use Math Stack Exchange, so I’m posting it on his behalf.

Let $$ I = \int_0^{\pi/4} \left( \frac{1}{\ln(\tan x)} + \frac{1}{1 - \tan x} \right) dx. $$

Set $t = \tan x$, so $x \in [0, \pi/4]$ corresponds to $t \in [0, 1]$ and $dx = \frac{dt}{1 + t^2}$. Then:

$$ I = \int_0^1 \left( \frac{1}{(1 + t^2)\ln t} + \frac{1}{(1 + t^2)(1 - t)} \right) dt = \int_0^1 \frac{1}{1 + t^2} \left( \frac{1}{\ln t} + \frac{1}{1 - t} \right) dt. $$

Break this into two integrals:

$$ I_1 = \int_0^1 \frac{dt}{(1 + t^2)\ln t}, \qquad I_2 = \int_0^1 \frac{dt}{(1 + t^2)(1 - t)}. $$

Use the substitution $t = e^{-s}$ in each integral. Then $dt = -e^{-s} ds$, $t = 1$ corresponds to $s = 0$, and $t \to 0^+$ corresponds to $s \to \infty$. One finds:

$$ I_1 = \int_{\infty}^0 \frac{-e^{-s}}{(1 + e^{-2s})(-s)},ds = \int_0^\infty \frac{e^{-s}}{s(1 + e^{-2s})} ds = \int_0^\infty \frac{ds}{2s\cosh s}, $$

since $1 + e^{-2s} = 2e^{-s} \cosh s$.

Similarly,

$$ I_2 = \int_{\infty}^0 \frac{-e^{-s}}{(1 + e^{-2s})(1 - e^{-s})} ds = \int_0^\infty \frac{e^{-s}}{(1 - e^{-s})(1 + e^{-2s})} ds = \int_0^\infty \frac{ds}{2\cosh s (1 - e^{-s})}. $$

Hence,

$$ I = I_1 + I_2 = \frac{1}{2} \int_0^\infty \frac{1}{\cosh s} \left( \frac{1}{s} + \frac{1}{1 - e^{-s}} \right) ds. $$

Combine the bracketed terms using the expansion:

$$ \frac{1}{1 - e^{-s}} - \frac{1}{s} = \frac{1}{2} + \frac{s}{12} - \frac{s^3}{720} + \cdots, $$

then integrate termwise against $\frac{1}{2\cosh s}$. In particular, use the known series expansions:

$$ \int_0^\infty \frac{s^n}{\cosh s} ds = 2,n! \sum_{k=0}^\infty \frac{(-1)^k}{(2k + 1)^{n+1}} = 2,n! ,\beta(n+1), $$

where $\beta$ is the Dirichlet beta function. After simplifying, one eventually arrives at:

$$ I = \frac{1}{2} - \beta’(0) - \frac{1}{4} \left[ \psi\left( \frac{1}{4} \right) + \psi\left( \frac{1}{2} \right) \right]. $$

Using the known values:

$$ \beta’(0) = \ln\left( \frac{\Gamma(1/4)^2}{2\pi \sqrt{2}} \right), \quad \psi\left( \frac{1}{2} \right) = -\gamma - 2\ln 2, \quad \psi\left( \frac{1}{4} \right) = -\gamma - \frac{\pi}{2} - 3\ln 2, $$

we simplify:

$$ I = \frac{\pi}{8} + \frac{\gamma}{2} + \ln\left( \frac{2^{7/4} \pi}{\Gamma(1/4)^2} \right). $$