We want to evaluate;
$$\int_0^1 \frac {\mathrm dx}{\left \lfloor{1-\log_2(1-x)}\right \rfloor}$$
The $\left \lfloor{x}\right \rfloor$ is the floor function. I have made no progress so far.
We want to evaluate;
$$\int_0^1 \frac {\mathrm dx}{\left \lfloor{1-\log_2(1-x)}\right \rfloor}$$
The $\left \lfloor{x}\right \rfloor$ is the floor function. I have made no progress so far.
The integrand function is constant on a sequence of intervals, in particular: $$I=\int_{0}^{1}\frac{dx}{\left\lfloor 1-\log_2 x\right\rfloor}=\sum_{n=1}^{+\infty}\frac{2^{1-n}-2^{-n}}{n}=\sum_{n=1}^{\infty}\frac{2^{-n}}{n}=\color{red}{\log 2.}$$