I have seen in an article that
$ \min_{\mathbf{K}} \hspace{0.2cm} tr[\mathbf{K} \Sigma \mathbf{K}^T]$ s.t. $ \mathbf{KH} = \mathbf{I} $
where $\mathbf{H}$ is of full column rank yields,
$\tilde{\mathbf{K} } = (\mathbf{H}^T\Sigma^{-1}\mathbf{H})^{-1}\mathbf{H}^T\Sigma^{-1}$.
Does anyone aware of some theorem related to this result.