$\int \sqrt{\tan (x)}dx $ Let $\tan(x)=t^{2}$
then $dx$ will become $\frac{2t}{1+t^{4}}$
Hence $\int \sqrt{\tan (x)}dx =\int\frac{2t}{1+t^4} dt $
But I cannot proceed from this step.
$\int \sqrt{\tan (x)}dx $ Let $\tan(x)=t^{2}$
then $dx$ will become $\frac{2t}{1+t^{4}}$
Hence $\int \sqrt{\tan (x)}dx =\int\frac{2t}{1+t^4} dt $
But I cannot proceed from this step.
A related problem. You can advance by using partial fraction noticing that
$$ \frac{ 2t^2}{1+t^4} = \frac{1}{t^2+i} + \frac{1}{t^2-i},\quad i=\sqrt{-1} .$$