Let $p > 3$ be a prime number. Show that $x^2 \equiv −3\mod p$ is solvable iff $p\equiv 1\mod 6$.
My try is
let $a$ be a solution of $x^2 \equiv -3 \mod p$. so $a^{p-1} \equiv 1\mod p$. This implies
$$(-1)^{\frac{p-1}2}≡(a^2)^\frac{p-1}2 \mod p.$$
since $p$ is odd, $\frac{p-1}2$ must be even, so $4|(p-1)$. conversely, assume that $p\equiv 1\mod 6...$