4

I want to evaluate the integral: $$I=\int_{0}^{\pi/2}\ln \left ( \frac{(1+\sin x)^{1+\cos x}}{1+\cos x} \right )\,dx$$

Well, the sub $u=\pi/2-x$ does not give me any result. In fact it makes the integral more complicated that it actually is, unless I do not see something.

The method above is the only one I used since I do not see something else in this point. Any help would be grateful.

Tolaso
  • 43

1 Answers1

9

The idea in the following is to simplify using logarithmic identities, and then to get rid of the nasty integration term using the symmetry of the limits. $$\begin{align} I&=\int_{0}^{\Large\frac\pi2}\ln \left ( \frac{(1+\sin x)^{1+\cos x}}{1+\cos x} \right )\,dx \\&=\int_{0}^{\Large\frac\pi2}[(1+\cos x)\ln(1+\sin x)-\ln({1+\cos x})]\,dx \\&=\int_{0}^{\Large\frac\pi2}[\cos x\ln (1+\sin x)+\ln(1+\sin x)-\ln({1+\cos x})]\,dx \\&=\int_{0}^{\Large\frac\pi2}\cos x\ln (1+\sin x)\,dx+\int_{0}^{\Large\frac\pi2}[\ln(1+\sin x)-\ln({1+\cos x})]\,dx \\&=\int_{0}^{\Large\frac\pi2}\cos x\ln (1+\sin x)\,dx \end{align}$$ in which the second term vanished because $$\int_{0}^{\Large\frac\pi2}\ln(1+\sin x)\,dx=\int_{0}^{\Large\frac\pi2}\ln(1+\cos x)\,dx$$

Now performing the substitution $u=1+\sin x$, we get

$$\begin{align} I&=\int_{0}^{\Large\frac\pi2}\cos x\ln (1+\sin x)\,dx \\&=\int_{1}^{2}\ln u\,du \\&=\bigg[u\ln u-u\bigg]_1^2 \\&=2\ln2-1. \end{align}$$

Tunk-Fey
  • 20,650