2

Im looking for a real-entire function $f(z)$ such that for any complex $z$ :

$1) $$f(z+p) =f(z)$

With $p$ a nonzero real number.

$2)$ $f(z)= 0 + a_1 z + a_2 z^2 + a_3 z^3 + ...$ where more than $50$ % of (signs of the) $a_n$ are $0$.

Thus let $f_n(z)$ be the truncated Taylor expansion of $f(z)$ of degree $n$. Let $T(n)$ be the amount of zero (signs in the) coefficients of the polynomial $f_n(z)$.

Then $\lim_{n -> +\infty} \dfrac{T(n)}{n} > \frac{1}{2}$.

$3)$ $f(z)$ is nonconstant.

Is such a function $f(z)$ possible ?

Related :

Real-analytic periodic $f(z)$ that has more than 50 % of the derivatives positive?


$$EDIT$$

I know that if $m$ is a positive integer different from $0,1,2,4$ and $g(z)$ is a nonconstant real-entire periodic function then $g(z^{\frac{1}{m}})$ is not entire. This rules out some periodic patterns in the derivatives as a potential solution to the question.

For instance that implies the pattern $[0,0,+,0,0,-]$ cannot occur.

Notice the pattern $[0,+,0,-]$ can occur and does because $[cos-1](\sqrt x)$ is entire.

I wanted to share this because it might help or inspire someone.


mick
  • 17,886
  • Look closely , In this OP i ask for coefficients being $0$ , in the other I considered the balance between strict positive and strict negative for the nonzero coefficients. – mick Jun 28 '14 at 19:55
  • Ok so Im answering to someone who removed his comment. Hope it serves a purpose. Clarification or such. – mick Jun 28 '14 at 19:56
  • Do you realy want $\lim>\frac12$ or just $\liminf >\frac12$? – Hagen von Eitzen Jun 28 '14 at 19:57
  • Yes I really want $lim > \frac{1}{2}$. lim inf seems to easy and solvable by trial and error and/or brute force search.@HagenvonEitzen – mick Jun 28 '14 at 20:15

0 Answers0