$\Pi_{i=1}^{k}(2i-1)=\frac{(2k)!}{k!2^k}$
clearly the products are in the set of the natural numbers.
Step one show that P(1) is true
$2(1)-1=1$
True.
Step 2 induction assumption
$\Pi_{i=1}^{k}(2i-1)=\frac{(2k)!}{k!2^k}$
This is what we assume to be true.
Step 3
$P(k+1)$
$\Pi_{i=1}^{k+1}(2i-1)=\frac{(2k+1)!}{(k+1)!2^{k+1}}$
The right hand side can be reduced to $\frac{2}{2^k2}$
$\Pi_{i=1}^{k+1}(2i-1)=2(k+1) + \Pi_{i=1}^{k}(2i-1)$
which is the last product times the multiplication of all the previous products.
$=2k+1 + \frac{(2k)!}{k!2^k}$
$=\frac{(2k+1)(2k)!}{k!2^k}$
$=\frac{2k+1(2)}{2^k}$
I am not sure how to continue this proof.