I can comprehend some but not all of the proofs. I do not understand how the limit definition of a derivative is derived in this context, and those are highlighted in $\color{#009900}{\text{green}}$.
This is from PDE Evans, 2nd edition, pages 127-128.
Theorem 5 (Solving the Hamilton-Jacobi equation). Suppose $x \in \mathbb{R}^n$, $t > 0$, and $u$ defined by the Hopf-Lax formula $$u(x,t)=\min_{y\in\mathbb{R}^n} \left\{tL\left(\frac{x-y}{t} \right) + g(y) \right\}$$ is differentiable at a point $(x,t) \in \mathbb{R}^n \times (0,\infty)$. Then $$u_t(x,t)+H(Du(x,t))=0.$$
Proof. 1.) Fix $v \in \mathbb{R}^n, h > 0$. Owing to Lemma 1, \begin{align} u(x+hv,t+h)&=\min_{y \in \mathbb{R}^n} \left\{ hL\left(\frac{x+hv-y} {h}\right)+u(y,t)\right\} \\ &\le hL(v)+u(x,t). \end{align} Hence, $$\frac{u(x+hv,t+h)-u(x,t)}{h} \le L(v).$$ Let $h \rightarrow 0^+$, to compute $$\underbrace{v \cdot Du(x,t)+u_t(x,t)}_{\color{#009900}{\text{How is this expression obtained?}}} \le L(v).$$ This inequality is valid for all $v \in \mathbb{R}^n$, and so $$u_t(x,t)+H(Du(x,t))=u_t(x,t)+\max_{v \in \mathbb{R}^n} \{v \cdot Du(x,t)-L(v) \} \le 0. \tag{31}$$ The first equality holds since $H = L^*:=\max_{v \in \mathbb{R}^n} \{v \cdot Du(x,t)-L(v) \}$, by convex duality of Hamiltonian and Lagrangian (page 121 of the book).
2.) Now chose $z$ such that $u(x,t)=tL(\frac{x-z}{t})+g(z)$. Fix $h > 0$ and set $s=t-h,y=\frac st x+(1- \frac st)z$. Then $\frac{x-z}{t}=\frac{y-z}{s}$, and thus \begin{align} u(x,t)-u(y,s) &\ge tL\left(\frac{y-z}{s} \right) + g(z) - \left[sL\left(\frac{y-z}{s} \right)+g(z) \right] \\ &= (t-s)L\left(\frac{y-z}{s} \right) \\ &=hL\left(\frac{y-z}{s} \right). \end{align} That is, $$\frac{u(x,t)-u((1-\frac ht)x+\frac htz,t-h)}{h} \ge L\left(\frac{x-z}{t} \right).$$ Let $h \rightarrow 0^+$, to see that $$\underbrace{\frac{x-z}{t} \cdot Du(x,t)+u_t(x,t)}_{\color{#009900}{\text{How is the limit definition of derivative applied here exactly?}}} \ge L\left(\frac{x-z}{t} \right).$$ Consequently,
\begin{align} u_t(x,t)+H(Du(x,t))&=u_t(x,t)+\max_{v\in\mathbb{R}^n} \{v \cdot Du(x,t)-L(v) \} \\ &\ge u_t(x,t)+\frac{x-z}{t} \cdot Du(x,t)-L\left(\frac{x-z}{t} \right) \\ &\ge 0 \end{align} This inequality and $\text{(31)}$ complete the proof.
I understand most of your answer, but I have one small question:
I am not too familiar with functional analysis yet; why do we get the byproduct of $(v,s)$? Is this simply the result from the definition of taking a derivative of a function $f(x,t)$ in $\mathbb{R}^n \times\mathbb{R}^+$?
– Cookie Jun 18 '14 at 06:33