I'm doing this exercise.
Let $A$ be an integral domain, then prove that $$A = \bigcap_{\mathfrak{p} \in \text{Spec(A)}} A_{\mathfrak{p}} = \bigcap_{\mathfrak{m} \in \text{MaxSpec(A)}} A_{\mathfrak{m}}$$ where the intersection is taken in the quotient field of $A$ and $A_{\mathfrak{p}}$ is the localization of $A$ at the prime ideal $\mathfrak{p}$, similarly for $A_{\mathfrak{m}}$ .
What I have done: we have $$A \subseteq \bigcap_{\mathfrak{p} \in \text{Spec(A)}} A_{\mathfrak{p}} \subseteq \bigcap_{\mathfrak{m} \in \text{MaxSpec(A)}} A_{\mathfrak{m}}$$ so it suffices to prove that $$\bigcap_{\mathfrak{m} \in \text{MaxSpec(A)}} A_{\mathfrak{m}} \subseteq A$$ Suppose $\frac{a}{b} \in \bigcap_{\mathfrak{m} \in \text{MaxSpec(A)}} A_{\mathfrak{m}}$ . I want to show that $b$ is invertible.
If $b$ is not invertible then there exists $ \mathfrak{m} \in \text{MaxSpec(A)} $ such that $b \in \mathfrak{m}$. By hypothesis $$\frac{a}{b} = \frac{r}{s}$$ with $s \not\in \mathfrak{m} $.
$A$ is a domain so $sa = rb \in \mathfrak{m} $ and thus $ a \in \mathfrak{m} $. Then I don't know how to proceed , any hint ?