$$(x+a_1)(x+a_2)(x+a_3)(x+a_4)(x+a_5)... =A(x)\tag 1$$
$$\frac{A(x)}{A(x)}=1=x\frac{(x+a_2)(x+a_3)(x+a_4)(x+a_5)...}{(x+a_1)(x+a_2)(x+a_3)(x+a_4)(x+a_5)... }+a_1\frac{(x+a_2)(x+a_3)(x+a_4)(x+a_5)...}{(x+a_1)(x+a_2)(x+a_3)(x+a_4)(x+a_5)... } \tag 2$$
$$1=\frac{x}{(x+a_1)}+a_1\frac{(x+a_2)(x+a_3)(x+a_4)(x+a_5)...}{(x+a_1)(x+a_2)(x+a_3)(x+a_4)(x+a_5)... } \tag 3$$
$$1=\frac{x}{(x+a_1)}+a_1\frac{x(x+a_3)(x+a_4)(x+a_5)...+a_2(x+a_3)(x+a_4)(x+a_5)...}{(x+a_1)(x+a_2)(x+a_3)(x+a_4)(x+a_5)... } \tag 4$$
$$1=\frac{x}{(x+a_1)}+\frac{a_1x}{(x+a_1)(x+a_2)}+a_1a_2\frac{(x+a_3)(x+a_4)(x+a_5)...}{(x+a_1)(x+a_2)(x+a_3)(x+a_4)(x+a_5)... } \tag 5$$
$$1=\frac{x}{(x+a_1)}+\frac{a_1x}{(x+a_1)(x+a_2)}+a_1a_2\frac{x(x+a_4)(x+a_5)...}{(x1+a_1)(x+a_2)(x+a_3)(x+a_4)(x+a_5)... }+a_1a_2\frac{a_3(x+a_4)(x+a_5)...}{(x+a_1)(x+a_2)(x+a_3)(x+a_4)(x+a_5)... } \tag 6$$
$$1=\frac{x}{(x+a_1)}+\frac{a_1x}{(x+a_1)(x+a_2)}+\frac{a_1a_2x}{(x+a_1)(x+a_2)(x+a_3)}+a_1a_2a_3\frac{(x+a_4)(x+a_5)...}{(x+a_1)(x+a_2)(x+a_3)(x+a_4)(x+a_5)... } \tag 7$$
If we continue in that way to create series then the last term will be :
$$\frac{a_1a_2a_3a_4a_5....}{x(x+a_1)(x+a_2)(x+a_3)(x+a_4)(x+a_5)... }\tag 8$$
The last term must go to zero otherwise the relation I wrote above must be as shown below
$$\frac{1}{x}-\frac{\prod\limits_{j=1}^{\infty}a_j}{x\prod\limits_{j=1}^{\infty} (x+a_j)}=\frac{1}{x+a_1}+\frac{a_1}{(x+a_1)(x+a_2)}+\frac{a_1a_2}{(x+a_1)(x+a_2)(x+a_3)}+\frac{a_1a_2a_3}{(x+a_1)(x+a_2)(x+a_3)(x+a_4)}+... \tag 9$$
$$\frac{1}{x}-\frac{\prod\limits_{j=1}^{\infty}a_j}{x\prod\limits_{j=1}^{\infty} (x+a_j)}=\frac{1}{x+a_1}+\sum\limits_{k=1}^ \infty\frac{\prod\limits_{j=1}^{k}a_j}{\prod\limits_{j=1}^{k+1} (x+a_j)} \tag {10}$$
If $\frac{\prod\limits_{j=1}^{\infty}a_j}{x\prod\limits_{j=1}^{\infty} (x+a_j)}=0$ then the relation will be
$$\frac{1}{x}=\frac{1}{x+a_1}+\sum\limits_{k=1}^ \infty\frac{\prod\limits_{j=1}^{k}a_j}{\prod\limits_{j=1}^{k+1} (x+a_j)} \tag {11}$$
Also The general formula can be written for n terms.
$$\frac{1}{x}-\frac{\prod\limits_{j=1}^{n}a_j}{x\prod\limits_{j=1}^{n} (x+a_j)}=\frac{1}{x+a_1}+\sum\limits_{k=1}^ {n-1} \frac{\prod\limits_{j=1}^{k}a_j}{\prod\limits_{j=1}^{k+1} (x+a_j)} \tag {12}$$
I had similiar question about that relation for $x=1$. If you want to see my question and answer, the link