Let $X$ be a finite measure space. Then, for any $ 1≤p<q≤+∞ $ : $ L^q(X,B,m)⊂L^p(X,B,m) $. I would like to know if the space $ L^{\infty} ( X , B , m ) $ is the direct limit or the inverse limit of the direct system or the inverse system $ ( L^p ( X , B , m ), i_{p}^q )_{p \in [1 , + \infty [ } $ with $ i_{p}^{q} : L^q ( X , B , m ) \to L^p ( X , B , m ) $ an embedding.
Thanks a lot for your help.