I'm trying to analyze the causal character of the surface $x^2 + y^2 - z^2 = -1$ in Lorentz-Minkowski space $\mathbb{L}^3$, with the convention $\mathrm{diag[1,1,-1]}$, that is $$\langle \left(x_1, y_1, z_1 \right), \left(x_2,y_2,z_2 \right) \rangle = x_1x_2 + y_1y_2 - z_1z_2$$
First I tried to see the general situation of a parametrized surface $\varphi : D \subset \mathbb{R}^2 \stackrel{C^1}{\rightarrow} \mathbb{L^3}$. We have $\mathrm{d}\varphi_p: T_pD \rightarrow T_{\varphi(p)}\mathbb{L}^3$ for a given $p \in D$, and I thought about the pull-back metric $$\varphi^*\langle,\rangle_p: T_pD \times T_pD \rightarrow \mathbb{R} \qquad \left(\varphi^*\langle,\rangle_p\right)(\zeta, \zeta) = \langle \mathrm{d}\varphi_p (\zeta), \mathrm{d}\varphi_p(\zeta)\rangle$$
Where $\zeta = \left(\zeta_1, \zeta_2\right) \in T_pD$. So far, so good. Expliciting $\varphi(u,v) = \left(x(u,v), y(u,v), z(u,v)\right)$, we would get: $$\mathrm{d}\varphi_p(\zeta) = \left(\begin{array}{c c} x_u(p) & x_v(p) \\ y_u(p) & y_v(p) \\ z_u(p) & z_v(p) \end{array}\right) \cdot \left(\begin{array}{c} \zeta_1 \\ \zeta_2 \end{array}\right) = \left(\begin{array}{c} \zeta_1 x_u(p) + \zeta_2 x_v(p) \\ \zeta_1 y_u(p) + \zeta_2 y_v(p) \\ \zeta_1z_u(p) + \zeta_2 z_v(p) \end{array} \right)$$ Proceeding, we would compute $\langle \mathrm{d}\varphi_p (\zeta), \mathrm{d}\varphi_p(\zeta)\rangle$. Now, I don't think I missed anything here in this tedious computation. If someone asks me to, I'll add here the whole computation. Factoring in matrix form, I got: $$\langle \mathrm{d}\varphi_p (\zeta), \mathrm{d}\varphi_p(\zeta)\rangle = \left(\begin{array}{c c} \zeta_1 & \zeta_2 \end{array} \right) \cdot \left(\begin{array}{c c} \langle \varphi_u, \varphi_u \rangle & \langle \varphi_u, \varphi_v \rangle \\ \langle \varphi_u, \varphi_v \rangle& \langle \varphi_v, \varphi_v \rangle \end{array} \right)_p \cdot \left(\begin{array}{c} \zeta_1 \\ \zeta_2 \end{array} \right)$$
Then, the causal character of $\varphi$ would depend on the positive-definiteness, etc, of the middle matrix above. Now, to the specific problem of the surface $x^2 + y^2 - z^2 = -1$. Geometrically it's easy to see that this hyperboloid is spacelike, but I would like to conclude that from my calculations above. One parametrization is $\varphi(u,v) = \left(\sinh u \cos v, \sinh u \sin v, \cosh u\right)$. Then, $\varphi_u(u,v) = \left(\cosh u \cos v, \cosh u \sin v, \sinh u \right)$ and $\varphi_v(u,v) = \left(- \sinh u \sin v, \sinh u \cos v, 0 \right)$, and we have: $$\begin{array}{c}\langle \varphi_u, \varphi_u \rangle = 1 \\ \langle \varphi_u, \varphi_v \rangle = 0 \\ \langle \varphi_v, \varphi_v \rangle = \sinh^2 u\end{array}$$
and so we get the matrix $\left(\begin{array}{c c} 1 & 0 \\ 0 & \sinh^2 u \end{array}\right)$. With this, I would conclude that if $u \neq 0$, then $\sinh^2 u > 0$ and $\varphi$ is spacelike. But, if $u = 0$, then $\sinh^2 u = 0$ and $\varphi$ would be lightlike. Was that supposed to be possible? I don't know if my approach of the theory was wrong, or my geometric vision, or my calculation, or anything at all. If someone can see this for me, I am very grateful. I hope my notation was clear enough.