Prove $$\left(\sum\limits_{i=1}^{n}x_i\right)^2\ge\sum\limits_{i=1}^{n}x_i^2,$$
for $x_i\ge0,\,\forall\,i\in\{1, \cdots, n\}.$
I tried by recurrence.
- For $n=1$, It is true.
- Suppose it is true for $n$, Prove for $n+1$:
- $$\left(\sum\limits_{i=1}^{n+1}x_i\right)^2=\left(\sum\limits_{i=1}^{n}x_i+x_{n+1}\right)^2=\left(\sum\limits_{i=1}^{n}x_i\right)^2+2x_{n+1}\left(\sum\limits_{i=1}^{n}x_i\right)+x_{n+1}^2\ge\sum\limits_{i=1}^{n}x_i^2+2x_{n+1}\left(\sum\limits_{i=1}^{n}x_i\right)+x_{n+1}^2\ge\sum\limits_{i=1}^{n}x_i^2+x_{n+1}^2=\sum\limits_{i=1}^{n+1}x_i^2,$$
This is correct (Probably).
Is there any other method?
