I would like to construct a (ring-theoretic) automorphism of $\Bbb C$ that fixes a finite set $A$ pointwise but does not fix $\Bbb R$ setwise. Marker's Model Theory, Corollary 1.3.6 does that in this way:
Let $r, s \in \Bbb C$ be algebraically independent over $A$ with $r \in \Bbb R$ and $s \not \in \Bbb R$. There is an automorphism $\sigma$ of $\Bbb C$ such that $\sigma|_A$ is the identity and $\sigma (r) = s$. Thus $\sigma(\Bbb R) \neq \Bbb R$ [...]
(By the way, the existence of such an automorphism implies $\Bbb R$ cannot be definable by a first-order formula in $\Bbb C$, and that's what this part of the book is all about.)
I suppose the proof can be divided into two parts, each of which corresponds to the first and the second sentence, resp. What are the general facts used in this proof? I would also be grateful if you could suggest materials on the field of mathematics that include those facts.