Can one find all positive integer triplets $(x,y,z)$ satisfying this parametric equation :
$$ax^2 + (1-a)x + by^2 + (1-b)y = cz^2 + (1-c)z$$
Here, $a, b, c$ are positive integers greater than $1$.
$a≡1(mod$ $x)$
$b≡1(mod$ $y)$
$c≡1(mod$ $z)$
One solution is to write this equation in the form below? $$X(X+A)+Y(Y+A)=Z(Z+A)$$ See Invid's answser : https://mathoverflow.net/questions/142938/is-there-an-algorithm-to-solve-quadratic-diophantine-equations