20

Hi I am trying to solve this integral $$ I:=\int_0^1 \log\left(\frac{1+ax}{1-ax}\right)\,\frac{{\rm d}x}{x\sqrt{1-x^2}}=\pi\arcsin\left(a\right),\qquad \left\vert a\right\vert \leq 1. $$ It gives beautiful result for $a = 1$ $$ \int_0^1 \log\left(\frac{1+ x}{1-x}\right)\,\frac{{\rm d}x}{x\sqrt{1-x^2}} =\frac{\pi^2}{2}. $$ I tried to write $$ I=\int_0^1 \frac{\log(1+ax)}{x\sqrt{1-x^2}}dx-\int_0^1 \frac{\log(1-ax)}{x\sqrt{1-x^2}}dx $$ If we work with one of these integrals we can write $$ \sum_{n=1}^\infty \frac{(-1)^{n+1} a^n}{n}\int_0^1 \frac{x^{n-1}}{\sqrt{1-x^2}}dx-\sum_{n=1}^\infty \frac{a^n}{n}\int_0^1 \frac{x^{n-1}}{\sqrt{1-x^2}}dx, $$ simplifying this I get an infinite sum of Gamma functions. which i'm not sure how to relate to the $\arcsin$ Thanks.

Felix Marin
  • 94,079
Jeff Faraci
  • 10,393
  • This question takes much time to load on my browser! – hola Aug 09 '14 at 14:55
  • Related: https://math.stackexchange.com/questions/2387130/evaluate-int-0-pi-frac-ln-left1-cos-theta-right-cos-theta-d-theta/4790307#4790307 – user170231 Oct 23 '23 at 22:20

7 Answers7

26

View $I$ as a function of $a$, differentiate under integral sign and let $x = \sin\theta$, we have

$$\begin{align} I'(a) &= \int_0^1 \left( \frac{x}{1+ax} - \frac{-x}{1-ax}\right) \frac{dx}{x\sqrt{1-x^2}} = \int_{-1}^1 \frac{dx}{(1+ax)\sqrt{1-x^2}}\\ &= \int_{-\pi/2}^{\pi/2} \frac{d\theta}{1+a\sin\theta} = \frac12 \int_0^{2\pi}\frac{d\theta}{1+a\sin\theta} = \frac12 \int_0^{2\pi}\frac{d\theta}{1+a\cos\theta} \end{align} $$ Introduce $z = e^{i\theta}$ and convert above integral to a contour integral over the unit circle in $z$, we get

$$I'(a) = \frac{1}{2i}\oint_{|z|=1} \frac{dz}{z+\frac{a}{2}(z^2+1)} = \frac{1}{ai}\oint_{|z|=1} \frac{dz}{(z - \lambda_{+})(z - \lambda_{-})} $$ where $\displaystyle\;\lambda_{\pm} = -\frac{1}{a} \pm \sqrt{\frac{1}{a^2}-1}.\;$ When $|a| \le 1$, only the root $\lambda_{+}$ lies inside the unit circle, we have $$I'(a) = \frac{1}{ai}\frac{2\pi i}{\lambda_{+} - \lambda_{-}} = \frac{2\pi}{2a\sqrt{\frac{1}{a^2}-1}} = \frac{\pi}{\sqrt{1-a^2}} $$ Since $I(0) = 0$, we get

$$I(a) = \pi \int_0^a \frac{dt}{\sqrt{1-t^2}} = \pi \arcsin(a)$$

achille hui
  • 125,323
14

The integral in question, \begin{align} I = \int_{0}^{1} \ln \left( \frac{1+ax}{1-ax} \right) \ \frac{dx}{x \sqrt{1-x^{2}}} \end{align} can be separated into the two integrals \begin{align} I = \int_{0}^{1} \frac{ \ln(1+ax)}{x \sqrt{1-x^{2}}} \ dx - \int_{0}^{1} \frac{ \ln(1-ax)}{x \sqrt{1-x^{2}}} \ dx \end{align} which will be labled $I_{1}$ and $I_{2}$. Now \begin{align} I_{1} &= \int_{0}^{1} \frac{ \ln(1+ax)}{x \sqrt{1-x^{2}}} \ dx \\ &= \sum_{n=1}^{\infty} \frac{(-1)^{n-1} a^{n}}{n} \ \int_{0}^{1} \frac{x^{n-1} \ dx}{\sqrt{1-x^{2}}} \\ &= - \frac{1}{4} \sum_{n=1}^{\infty} \frac{(-a)^{n}}{n} \ B(n/2, 1/2) \\ &= - \frac{1}{4} \sum_{n=1}^{\infty} \frac{(-2a)^{n} \ \Gamma^{2}(n/2)}{n!} \\ &= - \frac{1}{4} \left[ \sum_{k=0}^{\infty} \Gamma^{2}(k+1/2) \frac{(-2a)^{2k+1}}{(2k+1)!} + \sum_{k=0}^{\infty} \frac{(k!)^{2} (-2a)^{2k+2}}{(2k+2)!} \right] \\ &= - \frac{1}{4} \left[ -2\pi a \sum_{k=0}^{\infty} \frac{(1/2)_{k} (1/2)_{k} a^{2k}}{ k! (3/2)_{k}} + 4 a^{2} \sum_{k=0}^{\infty} \binom{2k+2}{k+1}^{-1} \frac{(2a)^{2k}}{(k+1)^{2}} \right] \\ &= \frac{\pi}{2} \ \sin^{-1}(a) - a^{2} \sum_{k=0}^{\infty} \binom{2k+2}{k+1}^{-1} \frac{(2a)^{2k}}{(k+1)^{2}}. \end{align} In a similar manor, \begin{align} I_{2} &= - \frac{\pi}{2} \ \sin^{-1}(a) - a^{2} \sum_{k=0}^{\infty} \binom{2k+2}{k+1}^{-1} \frac{(2a)^{2k}}{(k+1)^{2}}. \end{align} Since $I = I_{1} - I_{2}$ then \begin{align} \int_{0}^{1} \ln \left( \frac{1+ax}{1-ax} \right) \ \frac{dx}{x \sqrt{1-x^{2}}} = \pi \ \sin^{-1}(a) \end{align} which is the desired value.

Leucippus
  • 27,174
11

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{{\rm I}\pars{a}\equiv\int_{0}^{1}\ln\pars{1 + ax \over 1 - ax}\, {\dd x \over x\root{1 - x^{2}}} = \pi\arcsin\pars{a}:\ {\large ?} \,,\qquad\verts{a}\leq 1}$.

\begin{align} \color{#c00}{{\rm I}'\pars{a}} &=2\ \overbrace{\int_{0}^{1}{\dd x \over \pars{1 - a^{2}x^{2}}\root{1 - x^{2}}}} ^{\ds{\mbox{Set}\ x \equiv \cos\pars{\theta}}}\ =\ 2\int_{0}^{\pi/2}{\dd\theta \over 1 - a^{2}\cos^{2}\pars{\theta}} \\[3mm]&=2\int_{0}^{\pi/2}{\sec^{2}\pars{\theta}\,\dd\theta\over \sec^{2}\pars{\theta} - a^{2}}\ =2\ \overbrace{\int_{0}^{\pi/2}{\sec^{2}\pars{\theta}\,\dd\theta\over \tan^{2}\pars{\theta} + 1 - a^{2}}}^{\ds{\mbox{Set}\ t \equiv \tan\pars{\theta}}} \\[3mm] & =2\int_{0}^{\infty}{\dd t \over t^{2} + 1 - a^{2}} ={2 \over \root{1 - a^{2}}}\ \overbrace{\int_{0}^{\infty}{\dd t \over t^{2} + 1}}^{\ds{=\ {\pi \over 2}}} \\[3mm] & \qquad\imp\qquad \color{#c00000}{{\rm I}'\pars{a} = {\pi \over \root{1 - a^{2}}}} \end{align}

Since $\ds{{\rm I}\pars{0} = 0}$: \begin{align} {\rm I}\pars{a} & =\color{#66f}{\large\int_{0}^{1}\ln\pars{1 + ax \over 1 - ax}\, {\dd x \over x\root{1 - x^{2}}}} =\pi\int_{0}^{a}{\dd t \over \root{1 - t^{2}}} \\[3mm] & =\color{#66f}{\large \pi\ \arcsin\pars{a}} \end{align}

Felix Marin
  • 94,079
7

UPDATE: To make my answer less confusing, I changed the contour to a standard keyhole contour.


Assume that $|a| <1$.

From achille hui's answer, we have

$$I'(a) =\int_{-1}^1 \frac{\mathrm dx}{(1+ax)\sqrt{1-x^2}}.$$

Making the substitution $u = \frac{1-x}{1+x}$,

$$I'(a) = \frac{1}{1-a}\int_{0}^{\infty} \frac{\mathrm du}{\sqrt{u} \left(u+ \frac{1+a}{1-a} \right) }. $$

Using the branch of the logarithm where $0 \le \arg(z) < 2 \pi$, let's integrate the function $$f(z) = \frac{1}{1-a}\frac{1}{\sqrt{z} \left(z+\frac{1+a}{1-a}\right)}$$ around a keyhole contour with the "keyhole" on the positive real axis.

We get $$ \begin{align} I'(a) &= \frac{2 \pi i }{1-e^{- \pi i}} \operatorname{Res} \left[f(z), \frac{1+a}{a-1} \right] \\ &= \frac{2 \pi i }{1-e^{-\pi i}} \frac{1}{1-a} \frac{1}{\sqrt{\left|\frac{1+a}{a-1}\right|e^{\pi i}}} \\ &= \frac{ \pi}{\sqrt{1-a^{2}}}. \end{align} $$

Integrating back with respect to $a$ and using the fact that $I(0) = 0$, we have

$$ I(a) = \pi \arcsin (a) .$$

7

It is not necessary to use complex analysis or to use power series to compute. From @Random Variable, we have $$ I'(a) =\int_{-1}^1 \frac{dx}{(1+ax)\sqrt{1-x^2}}=\int_{-1}^1 \frac{1}{1+ax}d\arcsin x. $$ Let $x=\sin t$. Then $$ I'(a) =\int_{-\pi/2}^{\pi/2} \frac{1}{1+a\sin t}dt. $$ Let $u=\tan\frac{t}{2}$. Then \begin{eqnarray} I'(a)&=&2\int_{-1}^{1} \frac{1}{u^2+1+2au}du=2\int_{-1}^{1} \frac{1}{(u+a)^2+1-a^2}du\\ &=&\frac{2}{\sqrt{1-a^2}}(\arctan\frac{1+a}{\sqrt{1-a^2}}-\arctan\frac{-1+a}{\sqrt{1-a^2}})\\ &=&\frac{2}{\sqrt{1-a^2}}(\arctan\frac{1+a}{\sqrt{1-a^2}}+\arctan\frac{1-a}{\sqrt{1-a^2}})\\ &=&\frac{2}{\sqrt{1-a^2}}\frac{\pi}{2}\\ &=&\frac{\pi}{\sqrt{1-a^2}}. \end{eqnarray} But $I(0)=0$ and so $ I(a)=\pi\arcsin a. $

xpaul
  • 47,821
5

It's easier to take the derivative of both sides according to $a$, than to perform the integration: $$\int_0^1 \frac{2}{1-a^2x^2}\frac{dx}{\sqrt{1-x^2}}=\frac{\pi}{\sqrt{1-a^2}}$$ The left hand side giving: $$2 \text{arctanh}\left(\frac{\sqrt{a^2-1}}{\sqrt{1 - x^2}}x\right)\frac{1}{\sqrt{a^2-1}}+C$$ Which, when applying the limits, gives: $$\frac{\pi}{\sqrt{1-a^2}}+C$$ as desired. Now all that needs to be done is compare at a single point to prove that the $C=0$, which you already have done.

  • I would check this as the solution however you show no proof as to how to do the integral on the left hand side. The point of the problem is to do the integral (without Numerical assistance). If you can provide a proof as to how to do that integral, I will mark as answer also. +1 anyways – Jeff Faraci May 16 '14 at 03:54
1

Substitute $x=\sin t$ \begin{align} &\int_0^1 \ln\frac{1+ax}{1-ax}\,\frac{1}{x\sqrt{1-x^2}}dx\\ =&\ 2\int_0^{\pi/2}\frac{\tanh^{-1}(a\sin t)}{\sin t}dt = 2\int_0^{\pi/2} \int_0^a \frac1{1- y^2\sin^2t}dy\ dt\\ = &\ \pi \int_0^a \frac1{\sqrt{1-y^2}}dy =\pi\sin^{-1}a \end{align}

Quanto
  • 120,125