How do you prove that: $$ \begin{pmatrix} 1 & 1\\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n\\ F_{n} & F_{n-1} \end{pmatrix}$$
-
13What about induction? – Start wearing purple May 07 '14 at 08:17
2 Answers
Let
$$A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
And the Fibonacci numbers, defined by
$$\begin{eqnarray} F_0&=&0\\ F_1&=&1\\ F_{n+1}&=&F_n+F_{n-1} \end{eqnarray}$$
Then, by induction,
$$A^1=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix}$$
And if for $n$ the formula is true, then
$$A^{n+1}=A\,A^n=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} F_{n+1} & F_{n} \\ F_{n} & F_{n-1} \end{pmatrix}=\begin{pmatrix} F_{n+1}+F_n & F_{n}+F_{n-1} \\ F_{n+1} & F_{n} \end{pmatrix}=\begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_{n} \end{pmatrix}$$
So, the induction step is true, and by induction, the formula is true for all $n>0$.
- 23,601
- 7
- 53
- 88
-
Is ((1, 1), (1, 0)) considered the base matrix i.e one that we accept as it is and don't proove? – bytrangle Jul 11 '24 at 10:53
$$\begin{align} F(n+1) &= 1\,F(n) + 1\,F(n-1)\\ F(n) &= 1\,F(n) + 0\,F(n-1)\\ \\ \begin{bmatrix} F(n+1) \\ F(n) \end{bmatrix} &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F(n) \\ F(n - 1) \end{bmatrix} \\ \begin{bmatrix} F(n+1) \\ F(n) \end{bmatrix} &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} F(1) \\ F(0) \end{bmatrix} \\ \\ \text{as well as} \\ \begin{bmatrix} F(n) \\ F(n-1) \end{bmatrix} &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} F(0) \\ F(-1) \end{bmatrix} \\ \\ \text{from which it follows}\\ \begin{bmatrix} F(n+1) & F(n) \\ F(n) & F(n-1) \end{bmatrix} &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} F(1) & F(0) \\ F(0) & F(-1) \end{bmatrix} \\ \\ \text{and choosing} \\ F(1) &= 1 \\ F(0) &= 0 \\ F(-1) &= 1 \end{align}$$
- 24,386
-
-
@Raidri If F(-1) + F(0) = F(1), what do you get? The negatives of the fibonacci form a pretty recognizable pattern actually ^_^ – DanielV May 07 '14 at 16:30
-
How do you get from [[1, 1], [1, 0]] * [F(n), F(n - 1)] to [[1, 1], [1, 0]]^n * [F(1), F(0)] (3rd line to 4th line)? – bytrangle Jul 11 '24 at 11:24
-
1@bytrangle Because $$\begin{bmatrix}F(n) \ F(n - 1)\end{bmatrix} = \begin{bmatrix}1 & 1 \ 1 & 0\end{bmatrix} \begin{bmatrix}F(n - 1) \ F(n - 2)\end{bmatrix}$$ So $$\begin{bmatrix}F(n+1) \ F(n)\end{bmatrix} = \begin{bmatrix} 1 & 1 \ 1 & 0\end{bmatrix} \begin{bmatrix}1 & 1 \ 1 & 0\end{bmatrix} \begin{bmatrix}F(n - 1) \ F(n - 2) \end{bmatrix}$$ $$ = \begin{bmatrix} 1 & 1 \ 1 & 0\end{bmatrix}\begin{bmatrix} 1 & 1 \ 1 & 0\end{bmatrix} \begin{bmatrix}1 & 1 \ 1 & 0\end{bmatrix} \begin{bmatrix}F(n - 2) \ F(n - 3) \end{bmatrix}$$ Etc. – DanielV Jul 11 '24 at 12:50
-
@DanielV Thank you for the explanation and taking the time to write it in correct format. – bytrangle Jul 11 '24 at 13:06