0

Verify that 4(29!)+5! is divisible by 31. How do I work this out? Step by step explanation please!

Lil
  • 2,631

2 Answers2

1

Hint

\begin{align*} 30! &\equiv -1 \pmod{31} \\ 30 &\equiv -1 \pmod{31} \\ \implies 29! &\equiv \quad ? \pmod{31} \\ \end{align*}

0

$30! \equiv -1 \pmod{31}$, so $29! \equiv \frac{30!}{30} \equiv \frac{-1}{30} \pmod{31}$. So,

$4(29!) + 5! \equiv 4(\frac{-1}{30}) + 120 \equiv \frac{-4}{30} - 4 \equiv \frac{120}{30} - 4 \equiv 0 \pmod{31}$.

zscoder
  • 1,047