Hint $\,\ x \equiv 3\pmod 5\iff x\equiv 3,\color{#0a0}8,13\pmod{15}\ $ but only $\ \color{#0a0}8\equiv 2\pmod 3$
The above method will generally be the quickest when one of the moduli $\,m\,$ is very small, since it involves checking only $\,m\,$ candidate solutions. Another optimization also applies to this system: the Bezout identity for the moduli $\,m,n = 5,3\,$ is obvious since $\,5\ {\rm mod}\ 3\, =\, 5-2\cdot 3\, =\, -1,\, $ so $\ \ \color{#c00}{2\cdot 3}+\color{#c00}{(-1)5} = 1,\,$ and we can "read off" the solution from this Bezout identity as follows:
$\ \qquad\color{#c00}{j m} + \color{#c00}{k n} = 1\ \ \Rightarrow\ \begin{eqnarray}&&x\equiv a\!\!\!\pmod m\\ &&x\equiv b\!\!\!\pmod n\end{eqnarray}$ $\!\iff\!$ $\begin{eqnarray} x&\equiv&\ a\,\color{#c00}{kn}\, +\, b\,\color{#c00}{jm}&&({\rm mod}\ {mn})\\ &\equiv& a+(b\!-\!a)\color{#c00}{jm}&&({\rm mod}\ mn)\end{eqnarray}$
$\ \ \color{#c00}{2\cdot 3} + \color{#c00}{(-1)5} = 1\ \
\Rightarrow\ \begin{eqnarray}&&x\equiv a\!\!\!\pmod 3\\ &&x\equiv b\!\!\!\pmod 5\end{eqnarray}$
$\!\iff\!$ $\begin{eqnarray} x&\equiv&\ a\,\color{#c00}{(-5)} + b\,\color{#c00}{(6)}&&({\rm mod}\ {mn})\\ &\equiv&\ a+(b\!-\!a)\,\color{#c00}{(6)}&&({\rm mod}\ mn)\end{eqnarray}$
Hence for the special case $\ a,b\, =\,2,3\ $ we obtain $\ x\equiv 2+(3\!-\!2)\color{#c00}{(6)} = 8.\,$ With only a little practice, one can do the above in $10-30$ seconds of mental arithmetic in small cases.
The same optimization works generally when one of the moduli is $\pm1$ modulo the other, since that immediately yields the Bezout identity for their gcd $= 1.\,$ This essentially optimizes the extended Euclidean algorithm when it terminates in a single step.