I was testing my calculus knowledge when I found an example final exam from UCIrvine: http://www.math.uci.edu/sites/math.uci.edu/files/2B_final_samp1.pdf
Number 2.) a.) asks to evaluate:
$$ {d\over dx}\int_{sin(x)}^{x^2}t^3tan(t)dt $$
This is what I did:
$\begin{aligned} {d\over dx}\int_{\sin(x)}^{x^2}t^3\tan(t)dt &={d\over dx}\left(\int_{\sin(x)}^{a}t^3\tan(t)dt+\int_{a}^{x^2}t^3\tan(t)dt\right) \\ &= {d\over dx}\left(-\int_{a}^{\sin(x)}t^3\tan(t)dt+\int_{a}^{x^2}t^3\tan(t)dt\right) \\ &= -{d\over dx}\int_{a}^{\sin(x)}t^3\tan(t)dt+{d\over dx}\int_{a}^{x^2}t^3\tan(t)dt \\ &= -\sin^3(x)\tan(\sin(x))\cos(x)+{x^2}^3\tan(x^2)2x \\ &= 2x^7\tan(x^2)-\sin^3(x)\cos(x)\tan(\sin(x)) \end{aligned}$
Is this correct?