I have figured out a (long, and tedious) way to do it. But I was wondering if there is some sort of direct correlation or another path that I completely missed.
My attempt at the program was as follows:
A number of the form, $8k + 7 = 7 (mod 8)$. That is, we are looking for integers a, b, c such that $a^2 + b^2 + c^2 = 7 (mod 8)$.
LONG and TEDIOUS way: $$(8k)^2 = 0 (mod 8)$$ $$(8k+1)^2 = 1 (mod 8)$$ $$(8k+2)^2 = 4 (mod 8)$$ $$(8k+3)^2 = 1 (mod 8)$$ $$(8k+4)^2 = 0 (mod 8)$$ $$(8k+5)^2 = 1 (mod 8)$$ $$(8k+6)^2 = 4 (mod 8)$$ $$(8k+7)^2 = 1 (mod 8)$$
That is, using three of these modulo there is no way to arrive at $$a^2 + b^2 + c^2 = 7 (mod 8)$$