2

Sorry if I make something wrong in this post, because it is my first post.

$$ \lim_{x\rightarrow 0}\left [ \frac{a_{1}^{x}+a_{2}^{x}+a_{3}^{x}+\dots+a_{n}^{x}}{n} \right ]^{1/x} $$

egreg
  • 244,946

1 Answers1

2

"Shortcut":

If

$\lim_{x→α}f(x)=1$ and $\lim_{x→α}g(x)= \infty $

then $$\lim_{x→α}(f(x))^{g(x)}= \lim_{x→α}(1+f(x)−1)^{g(x)}= \lim_{x→α}[[(1+f(x)−1)^{\frac{1}{f(x)-1}}]^{(f(x)-1)}]^{g(x)}= \lim_{x→α}[(1+f(x)−1)^{\frac{1}{f(x)-1}}]^{\lim_{x→α}(f(x)-1)g(x)}= e^{\lim_{x→α}(f(x)-1)g(x)}.$$ $$\lim_{x\rightarrow 0}\left [ \frac{a_{1}^{x}+a_{2}^{x}+a_{3}^{x}+\dots+a_{n}^{x}}{n} \right ]^{1/x}=e^{\frac{1}{n}\lim_{x\rightarrow 0}(\dfrac{a_{1}^{x}-1}{x}+\dfrac{a_{2}^{x}-1}{x}+ \cdots +\dfrac{a_{n}^{x}-1}{x})}=e^{\frac{1}{n}(\ln a_1+\ln a_2+ \cdots +\ln a_n)}= e^{\ln (a_1\cdot a_2\cdots a_n)^{\frac{1}{n}}}= (a_1\cdot a_2\cdots a_n)^{\frac{1}{n}}.$$

We applied $\lim_{x\rightarrow 0}\dfrac{a^{x}-1}{x}= \ln a.$

medicu
  • 4,592