Let A,B real or complex matrixes. Show that $e^{t(A+B)} = e^{tA}e^{tB}$ for all $t \in \mathbb{R}$ if, and only if $AB = BA$.
I demonstrated the reciprocal:
$\Leftarrow )$ The two equations are solutions of $X' = (A+B)X$, $X(0)= I$, because
$(e^{tA}e^{tB})' = Ae^{tA}e^{tB} + e^{tA}Be^{tB} = Ae^{tA}e^{tB} + Be^{tA}e^{tB} = (A+B)e^{tA}e^{tB}$ and
$(e^t(A+B))' = (A+B)e^{t(A+B)}$. Thus, $e^{t(A+B)} = e^{tA}e^{tB}$.
I have problems to demonstrate the implication.