Hi I am trying to show that if $X_n$ is a markov process, whether or not $X_n^2$ is a markov process.
$X_n$ is a markov process if $P\{X_k = a_k|X_{k-1} = a_{k-1}, X_{k-2} = a_{k-2}, ..., X_k = a_1 \} = P\{X_k = a_k|X_{k-1} = a_{k-1}\}$.
Then $P\{X_k^2 = a_k|X_{k-1}^2 = a_{k-1}, X_{k-2}^2 = a_{k-2}, ..., X_k^2 = a_1 \} = P\{X_k = \pm \sqrt{a_k} |X_{k-1} = \pm \sqrt{a_{k-1}}, X_{k-2} = \pm \sqrt{a_{k-2}}, ..., X_k = \pm \sqrt{a_1} \} = P\{X_k = \pm \sqrt{a_k} |X_{k-1} = \pm \sqrt{a_{k-1}}\}$
may not be true since this knowing the probability of $X_{k-1} = - \sqrt{a_{k-1}}$ does not tell you anything about the probability of $X_{k} = + \sqrt{a_{k}}$
Am I on the right path here? Thanks!