0

In the midst of a proof I am reading the following lines are present:

For $I\subseteq [a,b]$ and $f,g: [a,b]\to \mathbb{R}$ be integrable on $[a,b]$:

$\inf\{(f+g)(x):x\in I\}\geq \inf\{f(x):x\in I\}+\inf\{g(x):x\in I\}$

and

$\sup\{(f+g)(x):x\in I\}\leq \sup\{f(x):x\in I\}+\sup\{g(x):x\in I\}$.

Why are they true? Some variation of the triangle inequality?

1 Answers1

2

Spelled out: If $a\ge f(x)$ for all $x\in I$ and $b\ge g(x)$ for all $x\in I$ then $a+b\ge f(x)+g(x)$ for all $x\in I$.