In the midst of a proof I am reading the following lines are present:
For $I\subseteq [a,b]$ and $f,g: [a,b]\to \mathbb{R}$ be integrable on $[a,b]$:
$\inf\{(f+g)(x):x\in I\}\geq \inf\{f(x):x\in I\}+\inf\{g(x):x\in I\}$
and
$\sup\{(f+g)(x):x\in I\}\leq \sup\{f(x):x\in I\}+\sup\{g(x):x\in I\}$.
Why are they true? Some variation of the triangle inequality?