Problem statement
Let $u(t) \in L^{2}(0, 1)$ and $J(u) = \int_0^1 tu(t) \int_0^t u(s)dsdt$
Compute first and second Frechet derivatives.
Attempted solution
$$ \begin{split} J(u + h) - J(u) &= \int_0^1t(u(t) + h(t))\int_0^t u(s) + h(s) dsdt - \int_0^1tu(t)\int_0^t u(s) dsdt \\ &= \int_0^1th(t)\int_0^t u(s) + h(s) dsdt + \int_0^1 tu(t) \int_0^t h(s) dsdt \\ &= \int_0^1th(t)\int_0^t h(s) dsdt + \int_0^1th(t)\int_0^t u(s) dsdt + \int_0^1 tu(t)\int_0^t h(s)dsdt \end{split} $$
Now, in the previous question of mine I was taught a nice trick of "exchange order of integration, rename back the variables", which applies nicely to the last integral:
$$ \begin{split} \int_0^1 tu(t)\int_0^t h(s)dsdt &= \int_{t = 0}^1 \int_{s = 0}^t tu(t)h(s)dsdt\\ &= \int_{s = 0}^1 h(s) \int_{t = 0}^s tu(t)dtds \\ &= \int_{t = 0}^1 h(t) \int_{s = 0}^s su(s)dsdt \end{split} $$
After that the derivative computation looks like:
$$ J(u + h) - J(u) = \int_0^1th(t)\int_0^t h(s) dsdt + \int_0^1h(t)\int_0^t u(s)(t + s) dsdt $$
I believe the first one to be $o(\|h\|_{L_2})$ and the second one to be $DJ(u)(h)$ but I have no idea of how to prove that. How is that shown?