let $x,y,z,n$ is positive integer,and such $$n=x^3+y^3+z^3-3xyz,n\le 2014$$
Find all the $n$ value
My idea: since $$x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)$$
then I can't Thank you
let $x,y,z,n$ is positive integer,and such $$n=x^3+y^3+z^3-3xyz,n\le 2014$$
Find all the $n$ value
My idea: since $$x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)$$
then I can't Thank you