Find constants $a$ and $b$ such that $$ \lim_{x \to 0} \frac{1}{bx-\sin x} \int^x_0 \frac{t^2dt}{ \sqrt{a+t}}=1$$
First,$a$ should be positive to make sure the limit is meaningful as $x \to 0^-$ .
Then I check the limit of the numerator,say $- \frac{a}{2}<x<0$. For t in the interval(x,0), there's $\frac{1}{\sqrt{a+t}}<M$, where $M>0$,so $$| \int^x_0 \frac{t^2dt}{ \sqrt{a+t}} | <M |\int^x_0t^2dt| =M \frac{-x^3}{3},$$ by using the sandwich theorem I get $\lim_{x \to 0^-} \int^x_0 \frac{t^2dt}{ \sqrt{a+t}} =0$,thing should be the same when $x>0$ .
So the limit is the form $0/0$ . Apply L'Hopital's rule twice I get $$\begin{align} \lim_{x \to 0} \frac{1}{bx-\sin x} \int^x_0 \frac{t^2dt}{ \sqrt{a+t}} &= \lim_{x \to 0} \frac{x^2}{ \sqrt{a+x}(bx-\sin x)} \\ &= \lim_{x \to 0} \frac{2x} { \frac{bx-\sin x}{2 \sqrt{a+x}}+ \sqrt{a+x} (b- \cos x)} \\ &= \lim_{x \to 0} \frac{4x \sqrt{a+x}}{3bx+2ab-2(a+x)\cos x -\sin x} \end{align}$$Now the limit becomes $ \frac{0}{2ab-2a}$,so $2a(b-1)=0$ and $b=1$ cause $a$ is positive. Apply L'Hopital's rule again $$\begin{align} \lim_{x \to 0} \frac{4x \sqrt{a+x}}{3x+2a-2(a+x)\cos x -\sin x} &= \lim_{x \to 0} \frac{4( \sqrt{a+x} + \frac{x}{2 \sqrt{a+x}})}{3+2a \sin x- 2 \cos x + 2 x \sin x - \cos x} \\ & = \lim_{x \to 0} \frac{2(2a+3x)}{\sqrt{a+x} (3-3 \cos x + 2a \sin x + 2x \sin x )} \\ &= \frac{4a}{\sqrt{a} 0} \quad ?!\end{align}$$
and I fail to solve it.
Thanks in advance.