So I defined
$$\theta:R \rightarrow R\backslash I$$
by $$\theta(x) = [x]_I$$ and
$$\phi: R[x]\rightarrow (R\backslash I)[x]$$ by $$\phi(a_nx^n +\dotsb+a_1x+a_0) = \theta(a_n)x^n+\dotsb+\theta(a_1)x+\theta(a_0)$$
I know that $\ker\phi= I[x]$ but I can't express it in math notation. :'(
Here's an attempt: Let $f(x)=a_nx^n +.....+a_1x+a_0$
$\ker\phi = \{f(x) \in R[x]|\phi(f(x)) = 0\} =\{f(x) \in R[x]|\theta(a_i) = 0 \forall i\in R\} \rightarrow$ {polynomials with coefficients in I}$=I[x]$ How can I express this? Thanks :)