Starting off where you finished and credits to this pdf:
$$\sin'(x) = \lim_{\Delta x \to 0} \left(\cos x \frac{\sin \Delta x}{\Delta x} + \sin x \frac{\cos \Delta x - 1}{\Delta x} \right)$$ $$= \cos x \lim_{\Delta x \to 0} \frac{\sin \Delta x}{\Delta x} - \sin x \lim_{\Delta x \to 0} \frac{1 - \cos \Delta x}{\Delta x}$$
Part I: prove that $\displaystyle \lim_{\Delta x \to 0} \frac{\sin \Delta x}{\Delta x} = 1$.

Assuming that $OA = 1$ (i.e. it's a unit circle), we have $\sin \theta = BC$. We then note that
[Area of triangle $AOD$] > [Area of sector $AOC$] > [Area of triangle $AOC$]
which means
$$\frac{1}{2} \frac{\sin \theta}{\cos \theta} > \frac{1}{2} \theta > \frac{1}{2} \sin \theta$$
From this we get $$\cos \theta < \frac{\sin \theta}{\theta} < 1$$
and since $\displaystyle \lim_{\theta \to 0} \cos \theta = 1$, we have that $\displaystyle \lim_{\theta \to 0} = 1$.
Part II: prove that $\displaystyle \lim_{\Delta x \to 0} \frac{1 - \cos \Delta x}{\Delta x} = 0$.
$$\lim_{\Delta x \to 0} \frac{1 - \cos \Delta x}{\Delta x} = \lim_{\Delta x \to 0} \frac{(1 - \cos \Delta x) (1 + \cos \Delta x)}{(1 + \cos \Delta x)\Delta x} = \lim_{\Delta x \to 0} \frac{1 - \cos^2 \Delta x}{(1 + \cos \Delta x)\Delta x}$$
$$ = \lim_{\Delta x \to 0} \frac{\sin^2 \Delta x}{(1 + \cos \Delta x)\Delta x} = \lim_{\Delta x \to 0} \frac{\sin \Delta x}{\Delta x} \frac{\sin \Delta x}{1 + \cos \Delta x}$$
We have proven in part I that $\displaystyle \lim_{\Delta x \to 0} \frac{\sin \Delta x}{\Delta x} = 1$, and we note that $\displaystyle \frac{\sin \Delta x}{1 + \cos \Delta x} = \frac{0}{1+1} = 0$.
We finally put all this together to get that $$\boxed{\displaystyle \sin'(x) = \cos x \lim_{\Delta x \to 0} \frac{\sin \Delta x}{\Delta x} - \sin x \lim_{\Delta x \to 0} \frac{1 - \cos \Delta x}{\Delta x} = \cos x \cdot 1 - \sin x \cdot 0 = \cos x}$$