2

Let $$ a_1,a_2,\dots,a_n $$ be positive real numbers such that $$ \prod_{i=1}^n a_i =1 $$ Prove that $$ \prod_{i=1}^n (1+a_i) \geq 2^n $$

2 Answers2

12

Hint: note that $\frac{1+a_i}{2} \geq \sqrt{a_i}$ (by the AM-GM inequality), so that $$ \prod_{i=1}^n \left(\frac{1+a_i}{2}\right) \geq \prod_{i=1}^n \sqrt{a_i} $$

Ben Grossmann
  • 234,171
  • 12
  • 184
  • 355
4

By Holder $$\prod_{i=1}^n(1+a_i)\geq\left(1+\sqrt[n]{\prod\limits_{i=1}^na_i}\right)^n=2^n$$