How to prove that if $n>4$ is a composite number, then $(n-1)!$ is a multiple of $n$?
I don't have an idea, where to start. Grateful for a hint.
How to prove that if $n>4$ is a composite number, then $(n-1)!$ is a multiple of $n$?
I don't have an idea, where to start. Grateful for a hint.
Hints:
$\;n>4\;$ composite $\;\implies \,\exists\,1<a,b\le n-1\;\;s.t.\;\;ab=n\;$.
Now write carefully the expression for $\;(n-1)!\;\ldots$
Hint $\rm\:\!\ n\, =\, \color{#C00}a\:\!\color{#0A0}b\mid1\!\cdot\! 2\cdots\color{#C00} a\:\color{#0A0}{(a\!+\!1)\, (a\!+\!2) \cdots (a\!+\!b)}\cdots (\color{#0af}{ab\!-\!1})=(n\!-\!1)!\ $ when $\rm\, \color{#0a0}{a\!+\!b} \le \color{#0af}{ab\!-\!1} $
$\rm\color{#0A0}b\,$ divides $\rm\color{#0A0}{green}$ product since a sequence of $\rm\,b\,$ consecutive integers has a multiple of $\rm\,b,\,$ and
$\rm\, \color{#0af}{ab\!-\!1} \ge \color{#0a0}{a\!+\!b},\:$ i.e. $\rm\, (\underbrace{a\!-\!1}_{\large \ge\,1})(\underbrace{\color{#c0d}{b\!-\!1}}_{\large\ge\, 2}) \ge 2\,$ is true: $\rm\,a,b\ge 2,\,$ but $\rm\underbrace{not\ both =2,}_{\large n\,=\,ab\,\ne\, 4}\,$ so $\,\color{#c0f}{\rm one}$ is $\,\ge 3.$