I played around with this using parts because it looks like an integral that involves polylogs. Many of these can be done with parts or multiple use of parts.
$$\int\frac{\log(x)\log(1+x)}{1+x}dx$$
Let $$u=x+1$$
$$\int\frac{\log(u-1)\log(u)}{u}du=\int\frac{\log(u)}{u}\left(\log(u)+\log(1-1/u)\right)du$$
$$=\frac{\log^{3}(u)}{3}+\int\frac{\log(u)\log(1-1/u)}{u}du$$
Now, use parts on this last integral:
$u=\log(u), \;\ dv=\frac{\log(1-1/u)}{u}, \;\ du=\frac{1}{u}du, \;\ v=\operatorname{Li}_{2}(1/u)$
(as a note, $\int\frac{\log(1-1/u)}{u}du=\operatorname{Li}_{2}(1/u)$ is a rather famous integral related to the dilogarithm).
$$\int\frac{\log(u)\log(1-1/u)}{u}du=\log(u)\operatorname{Li}_{2}(1/u)-\int\frac{\operatorname{Li}_{2}(1/u)}{u}du$$
Also, note this last integral is simply $$-\operatorname{Li}_{3}(1/u)$$
Now, back sub $u=x+1$, and put it altogether using the integration limits $0$ to $1$.
Hence, we arrive at:
$$ \left.1/3\log^{3}(x+1)+\log(x+1)\operatorname{Li}_{2}\left(\frac{1}{x+1}\right)+\operatorname{Li}_{3}\left(\frac{1}{1+x}\right)\right|_{0}^{1}$$
$$=1/3\log^{3}(2)+\log(2)\operatorname{Li}_{2}(1/2)+\operatorname{Li}_{3}(1/2)-\operatorname{Li}_{3}(1).........(1)$$
Note the identities:
$$\operatorname{Li}_{2}(1/2)=\frac{\pi^{2}}{12}-1/2\log^{2}(2)$$
$$\operatorname{Li}_{3}(1/2)=7/8\zeta(3)+1/6\log^{3}(2)-\frac{\pi^{2}}{12}\log(2)$$
sum up (1):
$$1/3\log^{3}(2)+\log(2)\left(\frac{\pi^{2}}{12}-1/2\log^{2}(2)\right)+\left(7/8\zeta(3)+1/6\log^{3}(2)-\frac{\pi^{2}}{12}\log(2)\right)-\zeta(3)$$
$$=\frac{-\zeta(3)}{8}$$