For simplicity of notation suppose that $\theta=0$; then the solution of the SDE
$$dY_t = - k Y_t \, dt + \sigma dW_t$$
is given by
$$Y_t = e^{-kt} Y_0 +\sigma\int_0^t e^{-k(t-r)} \, dW_r.$$
If $r(0) \sim \log(\mu,\varrho^2)$, then we can write $r(0)= e^{Y_0}$ where $Y_0 \sim N(\mu,\varrho^2)$ is independent from $(W_t)_{t \geq 0}$. In particular, we see that $(Y_t)_{t \geq 0}$ is a Gaussian process with mean
$$\mathbb{E}Y_t = e^{-k t} \mu$$
and variance
$$\mathbb{V}Y_t = e^{-2kt} \varrho^2+ \frac{\sigma^2}{2k} \left(1-e^{-2kt} \right).$$
Since the exponential moments of the normal distribution are well-known, we get
$$\begin{align*}\mathbb{E}r_t &= \mathbb{E}e^{Y_t} = \exp \left( \mathbb{E}Y_t+ \frac{1}{2} \mathbb{V}Y_t \right) = \exp \left( e^{-kt} \mu + e^{-2kt} \varrho^2+ \frac{\sigma^2}{2k} \left(1-e^{-2kt} \right) \right). \end{align*}$$
This shows that the expectation of the process $(r_t)_{t \geq 0}$ depends on the time $t$. Consequently, it is not a stationary process.