Proving $$\lim_{x\to0} \dfrac{\sin x}{x} = 1$$
I know it can be solved with unit circle but it ends up to become same value.
Proving $$\lim_{x\to0} \dfrac{\sin x}{x} = 1$$
I know it can be solved with unit circle but it ends up to become same value.
Easiest way to evaluate the limit is to use L'Hopital's Rule. Since $\frac{\sin 0}{0}$ is indeterminate, we can apply L'Hopital's Rule.
$\lim_{x\to 0}\frac{\sin x}{x}=\lim_{x\to 0}\frac{\cos x}{1}=\lim_{x\to 0}\cos x=\cos 0=1$
L'Hopital's Rule states that $$\lim_{x\to0} \frac{f(x)} {g(x)}=\lim_{x\to0} \frac{f'(x)} {g'(x)}.$$
Therefore, $$\lim_{x\to0} \frac{\sin(x)} {x}=\lim_{x\to0} \frac{\cos(x)} {1}=\cos(0)=1.$$