UPDATE:
My best result (for vectors with $10$ elements) is $18$.
(But Brendan McKay obtained set of 19 vectors: see cited above http://mathoverflow.net link).
Example of $18$ sum-free binary vectors:
$\qquad(0,0,0,0,1,1,0,0,1,1)$,
$\qquad(0,0,0,1,1,0,1,0,0,1)$,
$\qquad(0,0,1,1,0,1,0,0,1,1)$,
$\qquad(0,0,1,1,1,1,0,1,1,0)$,
$\qquad(0,1,0,0,1,1,1,0,1,0)$,
$\qquad(0,1,0,1,0,0,0,1,0,0)$,
$\qquad(0,1,0,1,0,0,1,1,1,0)$,
$\qquad(0,1,0,1,1,0,0,0,0,1)$,
$\qquad(0,1,1,0,1,0,0,1,0,1)$,
$\qquad(0,1,1,1,0,1,1,1,0,1)$,
$\qquad(1,0,0,0,1,0,1,1,0,1)$,
$\qquad(1,0,0,0,1,0,1,1,1,1)$,
$\qquad(1,0,0,1,0,0,0,1,0,1)$,
$\qquad(1,0,1,0,0,1,0,1,0,1)$,
$\qquad(1,1,0,0,0,1,1,0,0,1)$,
$\qquad(1,1,0,0,1,0,0,0,1,1)$,
$\qquad(1,1,0,1,1,1,0,0,0,0)$,
$\qquad(1,1,1,0,1,0,1,0,0,0)$.
Example of $17$ sum-free binary vectors:
$\qquad(0,0,0,0,0,0,1,1,1,1)$,
$\qquad(0,0,0,0,1,0,0,0,1,1)$,
$\qquad(0,0,0,1,1,1,1,0,1,0)$,
$\qquad(0,0,1,1,1,0,0,0,1,1)$,
$\qquad(0,1,0,1,1,1,0,1,0,1)$,
$\qquad(0,1,1,0,0,0,0,1,1,1)$,
$\qquad(0,1,1,1,0,0,0,1,1,0)$,
$\qquad(0,1,1,1,0,0,1,0,1,0)$,
$\qquad(1,0,1,1,0,0,0,1,0,0)$,
$\qquad(1,0,1,1,1,0,0,0,0,1)$,
$\qquad(1,0,1,1,1,0,0,1,1,0)$,
$\qquad(1,1,0,0,0,1,0,0,0,0)$,
$\qquad(1,1,0,0,1,0,0,0,1,1)$,
$\qquad(1,1,0,1,0,0,1,0,0,0)$,
$\qquad(1,1,0,1,0,0,1,1,0,0)$,
$\qquad(1,1,1,0,1,1,1,1,0,0)$,
$\qquad(1,1,1,1,1,1,1,1,0,1)$.
And example of $11$ sum-free binary vectors (just for curious):
$\qquad(1,0,0,0,0,0,0,0,0,0)$,
$\qquad(0,1,0,0,0,0,0,0,0,0)$,
$\qquad(0,0,1,0,0,0,0,0,0,0)$,
$\qquad(0,0,0,1,0,0,0,0,0,0)$,
$\qquad(0,0,0,0,1,0,0,0,0,0)$,
$\qquad(0,0,0,0,0,1,0,0,0,0)$,
$\qquad(0,0,0,0,0,0,1,0,0,0)$,
$\qquad(0,0,0,0,0,0,0,1,0,0)$,
$\qquad(0,0,0,0,0,0,0,1,1,0)$,
$\qquad(0,0,0,0,0,0,0,1,0,1)$,
$\qquad(0,0,0,0,0,0,0,0,1,1)$.
For $3,4,5,6,7,8,9,10$-dimensional vectors my best results are $4,5,7,9,12,14,16,18$ accordingly.