Let $f(x)=1/x$. Show continuity at $x=1/2$
My work:
$$\left| {x - \frac{1}{2}} \right| < \delta \Rightarrow \left| {\frac{1}{x} - 2} \right| < \varepsilon $$
$$\left| {\frac{1}{x} - 2} \right| = \left| {\frac{2}{x}\left( {\frac{1}{2} - x} \right)} \right| = \left| {\frac{2}{x}} \right|\left| {\left( {\frac{1}{2} - x} \right)} \right|$$
Now, I'm not sure how to choose $\delta$ properly. How to do it?