I have a pboblem as: $\int_0^{2\pi } {\delta \left( {{\rm{cos}}x} \right)dx} $.
I have done this:
$\begin{array}{l} g\left( x \right) = {\rm{cos}}x = 0 \Rightarrow \left[ \begin{array}{l} x = \frac{\pi }{2}\\ x = - \frac{\pi }{2} \end{array} \right. \Rightarrow \left[ \begin{array}{l} g'\left( {\frac{\pi }{2}} \right) = - \sin \left( {\frac{\pi }{2}} \right) = - 1\\ g'\left( { - \frac{\pi }{2}} \right) = - \sin \left( { - \frac{\pi }{2}} \right) = 1 \end{array} \right.\\ \Rightarrow \int_0^{2\pi } {\delta \left( {{\rm{cos}}x} \right)dx} = \int_0^{2\pi } {\delta \left( {x - \frac{\pi }{2}} \right)dx} + \int_0^{2\pi } {\delta \left( {x + \frac{\pi }{2}} \right)dx = 2 } \end{array}$
Howerver, my pro said that I did it wrong, and require me rethouht!!! Where is my false? Thanks