Let $B(V,V')$ be the vector space formed by set of linear operators $T:V\rightarrow V'$. where $V,V'$ are normed vector spaces. Equip $B(V,V')$ with the norm
$$
\|T\|=\sup\frac{\|T(x)\|}{\|x\|}
$$
where $x\in V$.
Show that if $V'$ is Banach then $(B(V,V'),\|\cdot\|)$ is Banach.
(!!Beware that I am bad with quantifiers!!)
Proof:
- Find potential limit.
Let $\{T_n\}_{n\geq1}$ be a Cauchy in $B(V,V')$, then $\forall\varepsilon>0\ \exists N\geq 1 $ s.t. $n,m\geq N\Rightarrow$ $$ \sup\|T_n(x)-T_m(x)\|<\varepsilon \|x\| , $$ then $$ \|T_n(x)-T_m(x)\|\leq\sup\|T_n(x)-T_m(x)\|<\varepsilon \|x\|, $$ and so $\{T_n\}_{n\geq1}$ is Cauchy in $V'$ which is Banach, and so has a limit $T\in V'$. - Show that the limit is in the space.
W.t.s. that $T$ is bounded and linear \begin{equation} \begin{split} \|T(x)\| &\leq \|T_n(x)-T(x)\|+\|T_n(x)\| \\ &=\lim_{m\rightarrow\infty}\|T_n(x)-T_m(x)\|+\|T_n(x)\| \\ & \leq \limsup_{m\rightarrow\infty}\|T_n(x)-T_m(x)\|+\|T_n(x)\| \\ & \leq \varepsilon \|x\|+\|T_n(x)\| \end{split} \end{equation} Linearity.
$$ T_n(\lambda x+\mu y)=\lim_{n\rightarrow\infty}T_n(\lambda x+\mu y)=\lim_{n\rightarrow\infty}(\lambda T_n(x)+\mu T_n(y))=\lambda T(x)+\mu T(y) $$ - Show that the Cauchy sequence converges in norm.
W.t.s. $\lim_{n\rightarrow\infty}\sup\|T_n(x)-T(x)\|=0$.
For all $n,m\geq N$ $$ \|T_n(x)-T_m(x)\|\leq\sup\|T_n(x)-T_m(x)\|<\varepsilon \|x\|. $$ Take the limit in $m\rightarrow\infty$ $$ \|T_n(x)-T(x)\|<\varepsilon \|x\|. $$ Take the supremum $$ \sup\|T_n(x)-T(x)\|<\varepsilon \|x\|. $$ but $\varepsilon$ is arbitrary and $\|x\|$ finite.