I am wondering how to imagine the Hardy space on $\mathcal{H}^1(\mathbb{R}^n)$ and in particular what sort of functions are in $L^1(\mathbb{R}^n)\backslash\mathcal{H}^1(\mathbb{R}^n)$. Furthermore, is it possible to find explicit examples of functions in $\partial (L^1(\mathbb{R}^n)\backslash\mathcal{H}^1(\mathbb{R}^n))$?
$\mathcal{H}^p(\mathbb{R}^n)=L^p(\mathbb{R}^n)$ for $p>1$, but what is the "problem"/ difference when $p=1$ ( or $p\leq 1)$?
Thanks!