This is a short proof for the general case that
$$\sum_{q=1}^{\infty}\frac{c_q(n)}{q^s}=\frac{n^{1-s}\sigma_{s-1}(n)}{\zeta(s)} $$
The result in the OP follows by taking $s=2.$
Using $c_q(n) = \sum_{dr=q,d|n}\mu(r)d\hspace{3mm}(*)$ we get
$$\frac{c_q(n)}{q^s}=\sum_{dr|q,d|n}\frac{\mu(r)}{r^s}d^{1-s} $$
and so
$$ \sum_{q=1}^{\infty}\frac{c_q(n)}{q^s}=\sum_{q=1}^{\infty}\sum_{dr|q,d|n}\frac{\mu(r)}{r^s}= \sum_{d|n}d^{1-s}\sum_{r=1}^{\infty}\frac{\mu(r)}{r^s}= \frac{\sigma_{1-s}(n)}{\zeta(s)} = \frac{n^{1-s}\sigma_{s-1}(n)}{\zeta(s)}.$$
(*) This follows from $c_q(n) = \sum_{d|q,n}d\mu(\frac{q}{d})$
This proof appears in Moree and Hommerson's paper, Value Distribution of Ramanujan Sums and of Cyclotomic Polynomial Coefficients. They credit Esterman with this short proof and note a longer proof of Ramanujan. A longer version of the proof above appears in this paper. A proper cite for Esterman: T. Esterman, Vereinfachter Beweis eines Satzes von Kloosterman, Abh. Math. Seminar Hamburg Univ. 7 (1929), 82-98.