Following Prof.Mummert suggestion about the correct application of Intro- and Elimination- rules for quantifiers [pag.98-99]:
look at examples 5 and 6 on page 149 of Kleene 1952.
Example 5. Given $A(x) \vdash B$ and $A(x) \vdash \lnot B$ with x held constant, then $\vdash \lnot A(x)$ and $\vdash \forall x \lnot A(x)$. Supply the formal details.
1) $A(x) \vdash B$
2) $A(x) \vdash \lnot B$
applying ($\lnot-I$) [i.e. if $\Gamma, A \vdash B$ and $\Gamma,A \vdash \lnot B$ then $\Gamma \vdash \lnot A$ with $\Gamma = \emptyset$ ] to 1 and 2 :
3) $\vdash \lnot A(x)$
then apply ($\forall$-I) to 3 :
4) $\vdash \forall \lnot xA(x)$.
Another proof :
1) $A(x) \vdash B$
2) $\vdash A(x) \rightarrow B$ --- from 1,($\rightarrow$-I)
3) $A(x) \vdash \lnot B$
4) $\vdash A(x) \rightarrow \lnot B$ --- from 3,($\rightarrow$-I)
5) $\vdash (A \rightarrow B) \rightarrow (A \rightarrow \lnot B) \rightarrow \lnot A$ --- Axiom 7
7) $\vdash \lnot A(x)$ --- from 2,5 and 4,6 with two applications of ($\rightarrow$-E)
8) $\vdash \forall \lnot xA(x)$ --- from 7,($\forall$-I).
Example 6. Given $A(x) \vdash^x B$ and $A(x) \vdash^x \lnot B$ with x not necessarly held constant, then $\vdash \lnot \forall x A(x)$. Supply the formal details.