Let $\Omega$ an open and bounded set of $\mathbb{R}^N$. Consider $f\in L^2(\Omega)$, and $\varepsilon >0$. Let us call $u_\varepsilon$ the unique weak solution in $H^1_0(\Omega)$ of the problem
$-\varepsilon \Delta u + u = f \; \mbox{ in } \Omega,\;\; u=0 \;\; \mbox{ on }\partial \Omega.$
Prove that $u_\varepsilon$ converges to $f$ in $L^2(\Omega)$, as $\varepsilon$ goes to $0$.
Can you help me with to prove this result?
So far, I have this estimates:
$\|\nabla u_\varepsilon\|_{L^2(\Omega)}\leq \|f\|_{L^2(\Omega)}\varepsilon^{-1}$ and
$\|u_\varepsilon\|_{L^2(\Omega)}\leq \|f\|_{L^2(\Omega)}$.