3

Prove that the polynomial $f(X)=X^5-9X^3+15X+6$ is irreducible over $\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right)$

Apply Eisenstein's Irreducibility Criterion with $p=3$ we see that $f$ is irreducible over $\mathbb{Q}$. Can conclude that $f$ is irreducible over $\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right)$?

Sil
  • 17,976
Truong
  • 4,332
  • What is $\mathbb{Q}(\sqrt2,\sqrt3)$ again? Is that the polynomial ring over the rationals modulo $\sqrt2$ and $sqrt3$? – Caleb Jares Nov 17 '13 at 18:19

2 Answers2

11

You can't directly conclude that $f$ is irreducible over $\mathbb{Q}(\sqrt{2},\sqrt{3})$ from its irreducibility over $\mathbb{Q}$. But since the degree of $f$ is $5$, you can conclude that for any zero $\alpha$ of $f$,

$$[\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}(\alpha)]\cdot [\mathbb{Q}(\alpha):\mathbb{Q}]$$

is a multiple of $5$. On the other hand,

$$\begin{align} [\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}] &= [\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}(\sqrt{2},\sqrt{3})]\cdot [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]\\ &= 4[\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}(\sqrt{2},\sqrt{3})], \end{align}$$

so

$$5 \mid [\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}(\sqrt{2},\sqrt{3})].$$

Daniel Fischer
  • 211,575
1

It is not hard to see that $[{\mathbb Q}(\sqrt{2},\sqrt{3}):{\mathbb Q}]=4$. Since $4$ and $5$ are coprime we are done, because of the classical result proved here.

Ewan Delanoy
  • 63,436