You can't directly conclude that $f$ is irreducible over $\mathbb{Q}(\sqrt{2},\sqrt{3})$ from its irreducibility over $\mathbb{Q}$. But since the degree of $f$ is $5$, you can conclude that for any zero $\alpha$ of $f$,
$$[\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}(\alpha)]\cdot [\mathbb{Q}(\alpha):\mathbb{Q}]$$
is a multiple of $5$. On the other hand,
$$\begin{align}
[\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}] &= [\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}(\sqrt{2},\sqrt{3})]\cdot [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]\\
&= 4[\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}(\sqrt{2},\sqrt{3})],
\end{align}$$
so
$$5 \mid [\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha):\mathbb{Q}(\sqrt{2},\sqrt{3})].$$