let $a=x,b=1-x,f\left(a\right)=1+\dfrac{2a-2}{a^2+1},g\left(x\right)=f\left(a\right)*f\left(b\right)=1+\dfrac{\left(2a-2\right)\left(2b-2\right)}{\left(1+a^2\right)\left(1+b^2\right)}+\dfrac{\left(2a-2\right)}{\left(1+a^2\right)}+\dfrac{\left(2b-2\right)}{\left(1+b^2\right)}=1+\dfrac{4-4\left(a+b\right)+4ab}{a^2b^2+a^2+b^2+1}+\dfrac{-2-2b^2-2-2a^2+2\left(a+b\right)+2ab\left(a+b\right)}{a^2b^2+a^2+b^2+1}=1+\dfrac{8ab-4}{\left(ab\right)^2-2ab+3}=1+\dfrac{4-8\left(1-ab\right)}{\left(1-ab\right)^2+2}=1+4\times\dfrac{1-2u}{u^2+1},u=1-ab=1-a+a^2> 0$
$h\left(u\right)=\dfrac{1-2u}{u^2+1},3\ge u>0 $
$h'\left(u\right)=\dfrac{u^2-u-1}{\left(u^2+1\right)^2}=0, u=\dfrac{1+\sqrt{5}}{2}$, is min,
max is $u$ get min which is $u=\dfrac{3}{4}$
edit: there is more simple method to find max and min of $h\left(u\right)$
$u\ge \dfrac{3}{4} \implies 2u-1 \ge 0, t=2u-1,h\left(u\right)=-\dfrac{4t}{t^2+2t+5}=-\dfrac{4}{t+\dfrac{5}{t}+2} $
let $q\left(t\right)=t+\dfrac{5}{t}, \dfrac{1}{2}\le t \le 5 , q\left(t\right) \ge 2\sqrt{5}$ when $t=\sqrt{5}$ ,it is min.
for max, we only need to check two bounds: $q\left(\dfrac{1}{2}\right)=10\dfrac{1}{2},q\left(5\right)=6$, so max is $q=10\dfrac{1}{2}, t=\dfrac{1}{2}$.
now these are all high school methods.