2

I have to prove $n! < n^n$ for positive integers greater than 1, but with a little twist. I have to show $P(n-1)$ holds. For the left, I know $(n-1)! = \frac{n!}{n}$ and I'm stuck from there thinking about $(n-1)^{n-1}$.

Newb
  • 17,987
  • 14
  • 70
  • 116

6 Answers6

5

The inductive proof is standard and will surely be supplied by another answer. Here's a cooler way to do it:

Recall that $n! = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1}_{\text{n elements}}$.

Recall that $n^n = \underbrace{n \cdot n \cdot n \cdot \ldots \cdot n}_{\text{n elements}}$

So both $n!$ and $n^n$ are sequences of length $n$: for the first element of both, $n=n$. Thereafter, the element from $n^n$ is always larger, because $n > n-1, \ldots, n >1$. We know from the axioms of arithmetic and order for $\mathbb{Z}$ that if $a>b$ and $c>0$, then $ac > ab$. So the product of the elements of $n^n$ will be larger.

Newb
  • 17,987
  • 14
  • 70
  • 116
3

HINT:

If $ m^m> m!,$

$ (m+1)^{m+1}=(m+1) (m+1)^m> (m+1)m^m$ for $m>0$

$\implies (m+1)^{m+1} >(m+1)\cdot m!=(m+1)!$

3

Note that $$n^n=(n-1)^{n-1}\cdot \underbrace{\left(1+\frac1{n-1}\right)^{n-1}}_{>1\text{ if }n\ge 2}\cdot n$$

3

$1 \lt n$

$2 \lt n$

$3 \lt n$

...

$n-1 \lt n$

$n\le n$

If you multiply you get:

$1\cdot 2\cdot 3\cdot...\cdot (n-1)\cdot n \lt n\cdot n\cdot n\cdot...\cdot n\cdot n$

$n!\lt n^n$

learner
  • 6,926
1

Would it be acceptable to start from an obviously true statement like $$n! < (n-1)^n + (n-1)!$$ and work backwards to your desired inequality. $$n! < (n-1)^n + (n-1)!$$ $$n!-(n-1)! < (n-1)^n$$ $$\frac{n(n!)-n!}{n} < (n-1)^n$$ $$\frac{(n!)(n-1)}{n}<(n-1)^n$$ $$\frac{n!}{n}<\frac{(n-1)^n}{n-1}$$ $$(n-1)!<(n-1)^{n-1}$$

  • I'll leave this here since I've already written it, but Newb has a much clearer and more interesting way of viewing the problem. – Aaron Taylor Nov 15 '13 at 07:51
1

If you use induction, the inductive step is

$$(n+1)n!<(n+1)n^n<(n+1)(n+1)^n=(n+1)^{n+1}$$

meta_warrior
  • 3,338