0

How to find the following limit $$\lim_{n \rightarrow \infty} n \sin(2 \pi e n!)$$

Its answer is $2 \pi$. I am not seeing any clue to find it out.

Thank you for your help. If it discussed earlier please mention link.

Supriyo
  • 6,329
  • 7
  • 33
  • 64

1 Answers1

5

HINT: Recall that $e^x=\sum_{k\ge 0}\frac{x^k}{k!}$, so $e=\sum_{k\ge 0}\frac1{k!}$, and

$$en!=\sum_{k\ge 0}\frac{n!}{k!}=\sum_{k=0}^n\frac{n!}{k!}+\sum_{k\ge n+1}\frac{n!}{k!}\;.\tag{1}$$

The first term on the righthand side of $(1)$ is an integer, and the second is

$$\begin{align*} \sum_{k\ge n+1}\frac{n!}{k!}&=\frac1{n+1}+\frac1{(n+1)(n+2)}+\ldots\\\\ &\le\frac1{n+1}+\left(\frac1{n+1}\right)^2+\ldots\\\\ &=\sum_{k\ge 1}\left(\frac1{n+1}\right)^k\\\\ &=\frac{\frac1{n+1}}{1-\frac1{n+1}}\\\\ &=\frac1n\;. \end{align*}$$

Brian M. Scott
  • 631,399
  • Thank you Sir. The next part will be $\lim n \sin(2 \pi e n!) = \lim n \sin (\frac{2\pi}{n}) = \lim 2\pi \frac{\sin(\frac{2\pi}{n})}{\frac{2\pi}{n}}=2\pi$. – Supriyo Nov 10 '13 at 17:06
  • @Samprity: Almost: that righthand summation is between $\frac1{n+1}$ and $\frac1n$, so $\sin 2\pi en!$ is trapped between $\sin\frac{2\pi}{n+1}$ and $\sin\frac{2\pi}n$. Now use the squeeze theorem. – Brian M. Scott Nov 10 '13 at 17:14