Let $a_0 = 0$, and let $a_{n+1} = (n-1)a_n + n!$ for $n \ge 0$. Find an explicit formula for $a_n$.
I have gotten to the point where I have $\sum_{n \ge 0}a_{n+1}\frac{x^{n+1}}{(n+1)!}=\sum_{n \ge 0}a_{n}\frac{x^{n+1}}{n!}+\sum_{n \ge 0}\frac{x^{n+1}}{n+1}$.
I also set up the exponential generating function as $A(x) = \sum_{n \ge 0}a_n\frac{x^n}{n!}$, which is used to rewrite the above as $A(x)[1-x]=-ln(1-x)$ or $A(x)=-\frac{ln(1-x)}{1-x}$.
This is where I am stuck trying to find the explicit formula for $a_n$. Can you help me find the power series representation of the right-hand side? If so, I should be able to finish the question.