let $f:(0,\infty) \rightarrow \infty$ have the following properties: (I suppose $f$ continous)
a.) $\lim_{x \rightarrow \infty} \dfrac{f(x)}{x^k}=a ,a \in \mathbb R \bigcup \infty$
b.) $\lim_{x \rightarrow \infty} \dfrac{f(x+1)-f(x)}{x^{k-1}}=b , b \in \mathbb R \bigcup \infty$
c.) with $k \in \mathbb N_{>0}$ and different from $1$.
show that: $ \ b=ka$ , My approach:
$b=\lim_{x \rightarrow \infty} \dfrac{f(x+1)-f(x)}{x^{k-1}}=\lim_{x \rightarrow \infty} \dfrac{f(x+1)(x+1)^k}{x^{k-1}(x+1)^k}-\dfrac{f(x)x}{x^k}=\lim_{x \rightarrow \infty} \dfrac{f(x+1)(x+1)^k}{x^{k-1}(x+1)^k}-\lim_{x \rightarrow \infty}\dfrac{f(x)x}{x^k}=a \cdot \lim_{x \rightarrow \infty}\dfrac{(x+1)^k}{x^{k-1}}-x = \cdot a \lim_{x \rightarrow \infty}\dfrac{(x+1)^k-x^k}{x^{k-1}}$
and from here (using binomial expanson) we get : $b=a\cdot \lim_{x \rightarrow \infty} \binom{k}{1}=k$.
I'm unsure if I can subtract and recompose the limits like that. I know that if $f$ is continous ( wich i took as granted) we can split limits in this case but can we recompose them as i did? Some explanations/feedback on this would be very helpful,thanks.
-Also I suppose that $f$ is continous , would my reasoning apply if $f$ is not continous?
-Would the result of the problem hold if $f$ is not continous?